## Cellular Respiration Lab Report General Concepts

1. What are the commercial products produced by fermentation or anaerobic respiration? List at least two.
$\square$
2. What is the purpose of respiration?
$\square$
3. What are the differences between anaerobic and aerobic respiration?

4. Why do disaccharides produce more $\mathrm{CO}_{2}$ than monosaccharides?
$\square$

## Experiment-Specific Questions Digestion of Individual Sugars by Yeast Cells

1. For each of the sugars fermented by yeast, fill in the chart below to determine $\mathrm{CO}_{2}$ production?

| Results Table |  |  |  |
| :--- | :--- | :--- | :--- |
| Sugar | Initial Gas Volume <br> $\mathrm{t}=0$ minutes $(\mathrm{mL})$ | Final Gas Volume <br> $\mathrm{t}=5$ minutes $(\mathrm{mL})$ | Volume of $\mathrm{CO}_{2}$ produced <br> Final - Initial $(\mathrm{mL})$ |
| Glucose | .1 mL | 21.6 mL | 21.5 mL |
| Fructose | 0 mL | 7.8 mL | 7.8 mL |
| Maltose | 3 ml | 24.4 mL | 24.1 mL |
| Maltotriose | .0 mL | 5.0 mL | 5.0 mL |

2. For each of the sugars fermented by yeast, fill in the chart below to determine the mg of sugar consumed per minute during fermentation.
o For column one use

$$
n=(P \times V) \div(R \times T)
$$

o to calculate the moles of $\mathrm{CO}_{2}$ produced
o Use

$$
\text { moles of sugar consumed }=\text { moles of } \mathrm{CO}_{2} \text { produced } \div(2 \times \text { number of simple }
$$ sugars in that sugar)

o to calculate the moles of sugar consumed
3.
o Use

```
mg of sugar per minute = (moles sugar )}\times(\textrm{MW g}/\textrm{mole})\times(1000 mg/g) \div(
minutes)
```

o to calculate the mg of sugar fermented per minute
Calculations Table

| Sugar | Moles of $\mathrm{CO}_{2}$ produced | Moles of Sugar Consumed | Mg of sugar/min |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

4. Based on your results, which sugars should be provided to yeast grown commercially to minimize the amount of sugar that needs to be purchased?

I need a little help if someone has the time. I am doing a Biology Lab in Late Nite Labs and I do not understand this. Maybe someone could help me out.

Here is the questions/formulas

## Experiment 1 - Fermentation of Different Sugars

For each of the sugars fermented by yeast, record the following data for CO 2 production:
(a) name of the sugar
(b) initial gas volume at $t=0$ minutes ( mL )
(c) final gas volume at $t=5$ minutes ( mL )
(d) volume of CO2 produced $(\mathrm{mL})$
(e) temperature in the flask (deg C)

Add to your data the amount of mg of sugar consumed during fermentation. To calculate this, we need to use the ideal gas law and the equation for the chemical reaction that produces CO 2 gas from sugar molecules.

Here's how to calculate it:

1. In the background to this experiment, the fermentation reaction is given:

C6H12O6 --> 2CH3CH2OH + 2CO2 + energy
The coefficients in front of the molecules tell us in what ratio reactants are used and products are produced. In this case, 2 CO 2 molecules are created for every glucose molecule consumed.

Remember that the sugars tested in this experiment are either monosaccharides, disaccharides or trisaccharides, meaning that they are composed of 1,2 or 3 simple sugar molecules such as glucose and fructose, both of which have the molecular formula C 6 H 12 O 6.

Therefore, the relationship between CO 2 gas produced to sugar consumed can be written as:
number of CO 2 molecules $=$

2 * (number of sugar molecules) * (number of simple sugars in that sugar)
This means that for:
a monosaccharide, 2 CO 2 molecules are produced per molecule of sugar
a disaccharide, 4 CO 2 molecules are produced per molecule of sugar
a trisaccharide, 6 CO 2 molecules are produced per molecule of sugar.
2. The next step is a little more complicated and it uses the Ideal Gas Law to convert volume of gas to molecules. To simplify the calculation, we use the mole as our unit number of molecules and the molecular weight of each sugar.

The ideal gas law relates the moles of CO 2 gas molecules to its volume by:
$\mathrm{n}=(\mathrm{P} * \mathrm{~V}) /(\mathrm{R} * \mathrm{~T})$
where
n is the number of moles of CO 2
R is the gas constant 0.082 L -atm/mole-Kelvin
T is temperature in Kelvin (equal to degrees Celsius +273 )
$V$ is the volume in liters (divide the mL by 1000)
$P$ is the atmospheric pressure in the lab, which is just 1 atmosphere (atm)
3. Once you have the moles of CO 2 produced, you use the ratio of CO 2 to sugar molecules to calculate the moles of sugar that were broken down.
4. Finally, you can express your results in units of milligrams of sugar fermented per minute. For this you need a table of the molecular weights ( $\mathrm{MW}=$ grams/mole) of each sugar in order to convert from moles to grams.

The formula is:
mg of sugar per minute $=$
(moles sugar) * (MW g/mole) * (1000 mg/g) / (5 minutes)
Now, next to your data for the volume of CO 2 gas produced during each fermentation test with yeast, add the following values:
(a) Moles of CO 2 collected
(b) Ratio of (CO2 molecules produced) to (sugar molecules broken down)
(c) Moles of sugar broken down in five minutes
(d) mg of sugar fermented per minute

Here are the Molecular Weights (MW) for the sugars tested:
Glucose $=180.2 \mathrm{~g} / \mathrm{mole}$
Fructose $=180.2 \mathrm{~g} / \mathrm{mole}$
Sucrose $=342.3 \mathrm{~g} / \mathrm{mole}$
Maltose $=342.3 \mathrm{~g} / \mathrm{mole}$
Maltotriose $=504.4 \mathrm{~g} / \mathrm{mole}$
This is what I came up with while doing the lab.
Experiment 1 - Digestion of Individual Sugars by Yeast Cells

Flask 1
50 mL Glucose
50mL Yeast
Temp-2825C
Volume of Gas-.1ml 5 min 21.6 ml

Flask 2
50mL Fructoes
50mL Yeast
Temp-23.6C
Volume of Gas-.0ml 5 min 7.8 ml

Flask 4
50mL Maltose
50mL Yeast
Temp-29.4C
Volume of Gas-.3ml 5 min 24.4 ml

Flask 5
50mL Maltotriose
50mL Yeast
Temp-27.9C
Volume of Gas .0ml 5 min 5.0 ml

