MATH 107 FINAL EXAMINATION

This is an open-book exam. You may refer to your text and other course materials as you work on the exam, and you may use a calculator. You must complete the exam individually. Neither collaboration nor consultation with others is allowed.

Record your answers and work on the separate answer sheet provided.
There are 30 problems.
Problems \#1-12 are Multiple Choice.
Problems \#13-21 are Short Answer. (Work not required to be shown)
Problems \#22-30 are Short Answer with work required to be shown.

MULTIPLE CHOICE

1. Determine the domain and range of the piecewise function.
2.

A. Domain $[1 / 2,3 / 2]$; Range $[0,1]$
B. Domain $[-1,3]$; Range $[-3,1]$
C. Domain $[-1,1]$; Range $[-1,1]$
D. Domain $[-3,1]$; Range $[-1,3]$
2. Solve: $\sqrt{11+2 x}=x-2$
2. \qquad
A. 7
B. -13
C. $-1,7$
D. No solution
3. Determine the interval(s) on which the function is increasing.
3. \qquad
A. $(-\infty,-3.6)$ and $(0,6.7)$
B. $(-\infty,-2)$ and $(4, \infty)$
C. $(0,6.7)$
D. $(-2,4)$

4. Determine whether the graph of $y=9+|x|$ is symmetric with respect to the origin, the x-axis, or the y-axis.
4. \qquad
A. symmetric with respect to the x-axis only
B. symmetric with respect to the y-axis only
C. symmetric with respect to the origin only
D. not symmetric with respect to the x-axis, not symmetric with respect to the y-axis, and not symmetric with respect to the origin
5. Solve, and express the answer in interval notation: $|5-6 x| \leq 13$.
5. \qquad
A. $[3, \infty)$
B. $(-\infty,-4 / 3] \cup[3, \infty)$
C. $(-\infty,-4 / 3]$
D. $[-4 / 3,3]$
6. Which of the following represents the graph of $2 x-7 y=14$?
6. \qquad
A.

C.

B.

D.

7. Write a slope-intercept equation for a line parallel to the line $x-4 y=6$ which passes through the point $(-8,3)$.
7. \qquad
A. $y=-4 x-29$
B. $y=\frac{1}{4} x+3$
C. $y=\frac{1}{4} x+5$
D. $y=-\frac{1}{4} x+1$
8. Which of the following best describes the graph?
8. \qquad

A. It is a parabola.
B. It is a function and it is one-to-one.
C. It is a function but not one-to-one.
D. It is not a function and it is not one-to-one.
9. Express as an equivalent expression: $3 \log y+\log 1-\log (x+2)$
9. \qquad
A. $\frac{\log (3 y)}{\log (x+2)}$
B. $\log (3 y-x-1)$
C. $\log \left(\frac{3 y+1}{x+2}\right)$
D. $\log \left(\frac{y^{3}}{x+2}\right)$
10. \qquad
10. Which of the functions corresponds to the graph?

A. $f(x)=e^{-x}-1$
B. $f(x)=e^{x}-2$
C. $f(x)=e^{-x}+1$
D. $f(x)=-e^{x}$
11. Suppose that a function f has no x-intercepts.

Which of the following statements MUST be true?
11. \qquad
A. The equation $f(x)=0$ has no real-number solution.
B. The graph of f is a horizontal line.
C. $\quad f(x)>0$ for all x in the domain of f.
D. f is an invertible function.
12. The graph of $y=f(x)$ is shown at the left and the graph of $y=g(x)$ is shown at the right. (No formulas are given.) What is the relationship between $g(x)$ and $f(x)$?
12.

$y=f(x)$

$$
y=g(x)
$$

A. $g(x)=f(x-1)+3$
B. $g(x)=f(x+3)-1$
C. $g(x)=f(x+1)-3$
D. $g(x)=f(x-3)+1$

SHORT ANSWER:

13. Multiply and simplify: $(8+3 i)(2+5 i)$.

Write the answer in the form $a+b i$, where a and b are real numbers.
Answer: \qquad
14. Solve, and write the answer in interval notation: $\frac{x-1}{x+5} \geq 0$.

Answer: \qquad
15. A can of soda at $82^{\circ} \mathrm{F}$. is placed in a refrigerator that maintains a constant temperature of 35° F. The temperature T of the soda t minutes after it is placed in the refrigerator is given by

$$
T(t)=35+47 e^{-0.058 t}
$$

Find the temperature of the soda 10 minutes after it is placed in the refrigerator. (Round to the nearest tenth of a degree.)

Answer: \qquad
16. Find the value of the logarithm: $\log _{6}\left(\frac{1}{36}\right)$.

Answer: \qquad
17. Solve: $5^{3 x-2}=25$.

Answer: \qquad
18. Suppose $\$ 4,700$ is invested in an account at an annual interest rate of 3.8% compounded continuously. How long (to the nearest tenth of a year) will it take the investment to double in size?

Answer: \qquad
19. Let $f(x)=x^{2}+4 x+10$.
(a) Find the vertex.
(b) State the range of the function.
(c) On what interval is the function decreasing?

Answer: \qquad
Answer: \qquad
Answer: \qquad
20. Consider the polynomial $P(x)$, shown in both standard form and factored form.

$$
P(x)=-\frac{1}{8} x^{4}+\frac{3}{4} x^{3}-\frac{3}{8} x^{2}-\frac{13}{4} x+3=-\frac{1}{8}(x+2)(x-1)(x-3)(x-4)
$$

(a) Which sketch illustrates the end behavior of the polynomial function?

Answer: \qquad
(b) State the y-intercept.
(c) State the zeros of the function.
(d) State which graph below is the graph of $P(x)$.

Answer: \qquad
Answer: \qquad
Answer: \qquad

GRAPH A

GRAPH C

GRAPH B

GRAPH D

21. Let $f(x)=\frac{3 x-9}{x-2}$.
(a) State the domain.
(b) State the horizontal asymptote.
(c) State the vertical asymptote(s).
(d) Which of the following represents the graph of $f(x)=\frac{3 x-9}{x-2}$?

Answer: \qquad

Answer: \qquad

Answer: \qquad

GRAPH A.

GRAPH C.

GRAPH B.

GRAPH D.

SHORT ANSWER, with work required to be shown, as indicated.

22. Let $f(x)=\sqrt{x+3}$ and $g(x)=x-5$.
(a) Find $\left(\frac{f}{g}\right)(-2)$. Show work. Do not multiply here. Evaluate the quotient function.
(b) Find the domain of the quotient function $\frac{f}{g}$. Explain.
23. Points $(2,1)$ and $(6,-5)$ are endpoints of a line segment.
(a) What is the length of the line segment? Give the exact answer, no decimals, simplified as much as possible. Show work.
(b) What is the midpoint M of the line segment?
(c) Given the point M you found in part (b), state the point symmetric to M about the y-axis.
24. Find the equation for a line which passes through the points $(5,2)$ and $(8,-7)$. Write the equation in slope-intercept form. Show work.
25. A salesperson earns a base salary of $\$ 1,475$ per month and a commission of 8.4% on the amount of sales. If the salesperson has a paycheck of $\$ 4,637.60$ for one month, what was the amount of sales for the month? Show work.
26. Let $f(x)=5 x^{2}-4$ and $g(x)=x-2$.

Both parts of this problem are asking for composition or evaluation of functions, not multiplication.
(a) Find the composite function $(f \circ g)(x)$ and simplify. Show work.
(b) Find $(f \circ g)(-2)$. Show work.
27. Find the exact solutions and simplify as much as possible: $8 x^{2}=6 x+1$. Show work.
28. Given the function $f(x)=4-\frac{1}{7} x$, find a formula for the inverse function. Show work.
29. The Travel Time bus company has determined that when x tourists are given a particular bus tour, the profit P, in dollars, is given by

$$
P(x)=-0.25 x^{2}+28.50 x-310
$$

(a) What is the company's profit if 28 tourists are given the tour?
(b) How many tourists should be given the tour in order to maximize the company's profit? Show work.
30. Solve: $\frac{x+6}{x-1}=\frac{14}{x^{2}-1}$. Show work.

